
BTeV Trigger/DAQ Innovations

Author(s) Name(s)
Author Affiliation(s)

E-mail

Abstract

The BTeV experiment was a collider based HEP B-
physics experiment proposed at Fermilab. It included a
large-scale, high speed trigger/data acquisition (DAQ)
system, reading data off the detector at 500 Gbytes/sec
and writing to mass storage at 200 Mbytes/sec. The
online design was considered to be highly credible in
terms of technical feasibility, schedule and cost. This
paper will give an overview of the overall trigger/DAQ
architecture, highlight some of the challenges, and
describe the BTeV approach to solving some of the
technical challenges.

At the time of termination in early 2005, the
experiment had just passed its baseline review with
flying colors. Although not fully implemented, many of
the architecture choices, design, and prototype work
for the online system (both trigger and DAQ) were well
on their way to completion. Other large, high-speed
online systems may have interest in the some of the
design choices and directions of BTeV, including (a) a
commodity-based L1 tracking trigger running
asynchronously at full rate, (b) the hierarchical
control and fault tolerance in a large real time
environment, (c) a partitioning model that supports
offline processing on the online farms during idle
periods with plans for dynamic load balancing, and (d)
an independent parallel highway architecture.

1. Introduction

The proposed BTeV detector consisted of 6
separate subdetectors: pixel, silicon strips, straw tubes,
rich, emcal and muon with the pixel detector
dominating the channel count (see Table 1).

Subsystem Channels DCB Subsystems

Pixel 21M 10
Strips 128K 2
Straws 54K

Rich 154K
EMCAL 10K

Muon 37K

Table 1. Channel Count

The overall detector was designed to run with a 7.5
MHz clock rate delivering beam with a 396nsec (2.5
MHz) spacing between. Three levels of triggering
reduced the overall acceptance rate to 2.5 KHz. See
Table 2 for the data rates at each trigger leve.

 Frequenc

y
Event
Size

Data Rate

Into L1 2.5 MHz 200 KB 500 GB/sec
Into L2/L3 50 KHz 250 KB 12.5

GB/sec
Into

archival
2.5 KHz 80 KB 200

MB/sec

Table 2. Event Rates

Figure 1 shows the overall architecture of the entire
BTeV trigger and DAQ.

Figure 1. Trigger/DAQ Overview

 Global
Level-1 ITC

Information Transfer
 Control Hardware

GL1

Level-1 Buffers

 Fanout Switches

Level 2/3
Processor
 Farm

Pixel Processors

 FPGA
Segment
 Finder

 Level-1
Track/Vertex
 Farm

DAQ Highway Switch Data Combiners +
Optical Transmitters

BTeV Detector

Front End Boards

8 Data Highways

Data Logger

Cross Connect
 Switch

 L1 Switch

There are several points Figure 1 worth noting.
First, the detector was unique in that all the data was
brought off the detector and digitized in subdetector-
specific front end boards. This data was sent via point
to point copper cable to data combiner boards (DCBs)
before being sent to the first level trigger. The data
combiner board design was common across
subdetectors (FN). This architecture benefited the
design in that 1) much of the L1 trigger could be done
in software which allowed for the commodity
components described in Mike Wangs talk 2) the
DCBs provided a single entry point into the
trigger/DAQ that could be centrally designed and
maintained reducing the long term support load.

Secondly, data collected in the DCBs were routed
to 8 independent, parallel highways. See section for a
more detailed description of the DCB design. This
design reduced the overall control overheads on each
particular highway and grouped data coming out of the
L1 buffers into larget packets for better Ethernet
performance. Thirdly, the level 2 and 3 trigger (L2 and
L3, respectively) decisions were made on the same
L2/L3 farm. The practical difference is the amount of
data from a particular event is being evaluated and the
physics algorithms deployed. Lastly, the baseline of
the BTeV architecture was to log experiment data to
large disk farms, ie no tape, using dCache as the
underlying data storage support software.

4. Highway

 Let’s look at the highway architecture in more

detail starting with the DCB.
The data combiner boards are a custom component

and the first interface between the subdetectors’ front
end electronics and Two flavors of this board exist –
one for the fpix board readout (Pixel and Strip
detectors) and one for everyone else. For the purposes
of this paper, they can be considered the same with
only a variation on the configuration of the input ports
and rates.

 DCBs are the place in the online architecture that
splits the detector data into highways – eight parallel
and independent data streams each processing 1/8th of
the detector data. The original DCB design routed a
crossing a time. This was resulting a complex routing
table algorithm to factor out any periodicity in the
tevatron. We were investigating the possibility of
routing a data a turn at a time. This alternative
approach would simplify the routine, but increase the
length of time data would live in the DCB exposing it
to a higher single even upset rate. A given crossing
will send all of its data to only 1 highway.

A DCB board contained a commercial CPU and fast
Ethernet interface for control and low speed data
readout for diagnostics and commissioning.

Figure 2 shows the data and control flow in/out of a
DCB board.

Figure 2: DCB Data/Control Flow

The DCBs are received precise clock information from
the timing system We imagined being able to
reset/reconfigure “live” on a future crossing. E.g, if a
catastrophic highway failure, the DCBs could be sent a
control command to the DCBs to route to 7 highways
instead of 8 starting at crossing number 6000.
Data from the DCBs were routed over point to point
optical links into L1 buffers, another custom
electronics component. Each L1 Buffer could
communicate with 24 DCBs (two crates worth). See
It’s this unit that we will talk about in the partitioning
section regarding resource reservation.
For the two detectors that fed into the L1 trigger (pixel
and muon), data from the DCBs were also read out by
the segment preprocessors. Calculated data and

CPU

Input FPGA

Input Data from Front End
Boards (Cu)

144 links (ie, boards) for
pixel

50 links for non-pixel

140 Mbps/link
pixel

Timing
Module

Output FPGA

Output Data to L1 Buffer (Fiber)
8 fiber optic channels, one for
each highway

2.0

Det
ecto
r

DCB Fast
Ethernet

Control links
to front end
boards (Cu)

Control

Data
P h

decisions from the L1 trigger would then fed into
additional L1 buffers.

The primary responsibility of an L1 buffer is to buffer
the detector data for a long enough time to make an L1
trigger decision. There were 24 L1 buffers per
highway with 3G of memory each (the smallest we
imagined would be available). For an aggregate total
of ~0.5 TBytes of memory, or roughly 1 second of
data. Its flow diagram in shown in Figure 3.

Figure 3. L1 Buffer Data/Control Flow

Data comes into the input FPGA and is stored in a
dcircular buffer. When a L1accept is received, all data
for that subevent is copied into a smaller 1GB memory
area that will be used when transferring accepted
events to the downstream L2 trigger farm. No special
information is needed from the ITCH regarding L1
rejects; the data is simply overwritten in the circular
buffer.

This separate L1 trigger accept buffer in memory will
help in distributing an event to a second L2 worker
node. This capability might of interest when a specific
event satisfied the trigger tables in more than one
partition (see section blah). Details need to be flushed
out regarding bookkeeping in the L1 buffer to
understand exactly when an accepted event can be
overwritten (ie, when it has successfully transferred to

the primary partition) while allowing it to stay in
memory as long as possible to allow for parasitic L2
nodes to transfer additional copies.

From the L1 buffers, data is sent over a GBit Ethernet
to the to the L2/L3 trigger farm The L2/L3 trigger farm
is really running on the same hardware with the
distinction being which physics algorithm would be
currently processing the data. It consisted of
commodity processors was also split into highways.
Data from one highway could be physically sent to
another highway, but at a price to performance. Each
highway consisted of about 90 worker nodes each with
dual CPUs.

 To reduce the control overhead and complexity of the
software, we designed the event building switch with
enough capacity to send a complete event at L2. Each
CPU box was referred to as a worker node. Workers
nodes would declare themselves to a particular
partition, ie, trigger list (see section on partitioning)
and notify the ITCH when they were ready for data.
The ITCH would assign them a particular crossing
number. All data from that crossing would be sent to
that worker node.

Worker nodes themselves were grouped into
functional units in a highway. Each group was
controlled by a regional manager consisiting of 12
worker nodes. A regional manager was responsible for
configuring its aassociated worker nodes, fanning out
control commands and collecting statuses, caching
DMBS data (eg, various versions of the trigger
algorithm), and handling regional faults.

3. Fault tolerance

The BTeV trigger performs sophisticated

computations using large ensembles of FPGAs,
embedded processors, and conventional
microprocessors. This system will have between 5,000
and 10,000 computing elements and many networks
and data switches. The need for fault-tolerant, fault-
adaptive, and flexible techniques and software to
manage this huge
computing platform has been identified as one of the
most challenging aspects of this project.

As a response to this challenge, the Real Time
Embedded Systems (RTES) project group was formed
and funded through a 5 year NSF grant. This research
group is a collaborative effort between computer
scientists and high energy physicists. It is researching
the design and implementation of high-performance,
heterogenous, reliable, and fault-adaptive real-time

CP

Input FPGA

Input Data from DCBs
(Fiber)

24 channels (ie,

2 Gbps/channel

Contr

Data

Output to L2/3 worker
node

Det
ect Fast Ethernet

100Mb /
1

ITC
H

1 GB
Buffer

L1B
3 GB
Buffe

systems that are embedded (i.e. are an integral part of
the hardware they serve).

4. L1 trigger

One particular highlight of the BTeV design is a
commodity based L1 tracking trigger running
asynchronously at full rate. Details

5. Partitioning

Partitioning the detector was defined to be running

multiple independent data acquisition systems in
parallel. The value of partitioning and when would
partition the detector are different depending on the
phase of the project. I.e., partitioning needs during
commissiong e.g., testing the subdetectors in parallel
may be different than when testing new L3 trigger
algorithms while taking physics quality data.
Additionally, the BTeV L2/L3 farm contained A LOT
of processing power. It was an expensive investment to
be idle during periods of no beam or low luminosity.
The experiment was relying on using the online farm
to do offline processing when not required for data
taking. We planned to use the concept of partitioning
to support this functionality by having an “offline”
partition.

Partitioning is strictly a logical concept. One must

map this onto the physical implementation of the
experiment. The online DAQ/trigger was constructed
in 2 stages to match the proposed funding profile with
roughly 50% of capacity at each stage. The first stage
consisted of 4 highways and the second stage added
the next fiscal year. Even within a stage, individual
highways were commissioned one at a time. The
logical concept of partitioning needed to support
running multiple partitions on a single highway (when
only 1 was constructed) as well as the final system
with 8 highways

The parallel highway architecture and dynamic

reloading of DCB routing tables gave BTeV
overwhelming flexibility in this regard, so much so
that it became a source of confusion. It’s important to
note that at the time of BTeV’s cancellation, the
detailed requirements and design of partitioning were a
very hot topic among the online staff and hadn’t yet
reached buy in from the collaboration. What we will
discuss here are some of the ideas.

First, we imagined the cycle of running a partition

involved the following steps:

Selecting/reserving [subset of] electronics to be

read out
Defining how much L2/L3 trigger processing

power needed
Initializing the hardware
Collecting the data
Freeing the resources

Original ideas were for a physicist to select the

strips and straw front end crates, request 50 Mflops of
L2/L3 nodes for processing, and then let software map
this out onto a physical implementation. Depending on
how many nodes might be needed, the layout may be
to run on a single highway or to route to n highways. If
a given front end crate needed to send data to multiple
partitions, its DCB routing tables would be
dynamically reset to route as necessary. This idea was
balked at by members of the collaboration believing
nobody would every have any idea where the events
were going. An additional constraint on the system
was that, because of it’s architecture, the L1 trigger
hardware on a particular highway could NOT be
partition; however multiple sets of trigger tables could
be loaded into Global Level 1. It was imagined that a
given L2/L3 node could belong to one and only one
partition.

Because of the sheer number of electronics

involved in the Trigger/DAQ, we were converging on
the idea of the L1 trigger and active highways always
being available as a shared resource. A human run
coordinator would establish the overall online
configuration for a period of time (day/week/month)
and coordinate the individual groups taking data
during this period. This stable configuration period had
a fixed and predefined set of allowable highways.
Subdetector groups still had to select the specific
electronics to read out (in units of L1 buffers). These
front end crates could be reserved for read/write or
readonly (ie, can’t be reset or intitialized). It was the
responsibility of the run coordinator to schedule the
detector so that users could get write access as needed.
Partitions could come and go then, adding/removing
trigger tables as necessary.

For example, say the run coordinator has made 4

highways available for the next two days. The pixel
group could reserve the pixel front end electronics and
associated L1 buffers for read/write, load the pixel
trigger table. Crossing would be distributed to all 4
highways. Online software would assign specific
L2/L3 nodes to this partition as constrained by the run
coordinator. The silicon strip group could come and

reserve silicon electronics for read/write and pixel for
read only and load a second set of trigger tables.
Again, the software would assign L2/L3 worker nodes
specifically to this partition. If a given crossing passed
the L1 trigger for both partitions, it could be routed to
worker nodes in both partitions or split between the
two partitions in a predefined scalar. This was still also
being discussed in the collaboration.

Partioning became an obvious solution when
discussing the problem of how to utilize spare online
cycles for offline. The pure Computer Scientists
involved in RTeS promoted real time scheduling on
the worker nodes to squeak out the maximum CPU
utilization, but they were outweighed by the opinion
that a particular worker node should be single tasking
for a more simplistic and manageable from an
operational standpoint.

Nodes could manually by moved between online
and offline partitions, but we also envisioned an
automatic shift toward offline as luminosity in the
tevatron dropped. An overall luminosity profile would
be loaded at the start of a run. As system monitoring
tools detected lower utilization in the worker nodes,
they would migrate nodes into the offline partition.

5. Conclusions
Thanks to the efforts of many talented people in the
collaboration and at the lab as well as extremely
helpful comments from the many reviews, the DAQ
and trigger groups in BTeV were able to develop a
highly credible online architecture. This architecture
was believable in terms of cost and schedule with well
understood, and mimimal risks.
Key elements in the success of the design were
developing an architecture which maximized the
number of commodity components (switching fabric,
trigger farms) and on minimizing the variability
between custom boards, i.e, the DCBs were common
across all detectors.
6. References

[1- your url is the personnel pointer... You might consider
instead
 <http://www-btev.fnal.gov/public/hep/detector/rtes/>

http://www-btev.fnal.gov/cgi-
bin/DocDB/ShowDocument?docid=4034
the (RTAS/SIGBED) document itself. I will provide you
with
a "submitted for publication in ..." citation when DocDB
4034
is submitted (Friday this week, I hope), but if you look
inside
there is a really nice 2005 ARMOR citation (IEEE Internet

Computing),
for example, which actually has a section on BTeV.

Article Title”, Journal, Publisher, Location, Date, pp. 1-10.

[2] Jones, C.D., A.B. Smith, and E.F. Roberts, Book Title,
Publisher, Location, Date.

(the above are dummies, to show format)

[3] http://www-btev.fnal.gov/public/hep/detector/rtes/index
.shtml

[4] http://www-btev.fnal.gov/public/GeneralInformation
.shtml

[5] http://www-btev.fnal.gov/cgi-bin/DocDB/ListBy?topicid
=96

[6] http://www-btev.fnal.gov/public/hep/detector/rtes
/Publications/index.html

[gme1] Karsai G., Sztipanovits J., Ledeczi A., Bapty
T., “Model-Integrated Development of Embedded
Software”, Proceedings of the IEEE, Vol. 91, Number
1, pp. 145-164, January, 2003.

[gme2] Ledeczi A., Maroti M., Bakay A., Karsai G.,
Garrett J., Thomason IV C., Nordstrom G., Sprinkle J.,
Volgyesi P., “The Generic Modeling Environment”,
Workshop on Intelligent Signal Processing, Budapest,
Hungary, May 17, 2001.

[make1] J. Sztipanovits, G. Karsai, “Model-Integrated
Computing”, IEEE Computer, pp. 110-112, April,
1997.

[make2] Universal Data Model tools available from
ISIS and the Escher Research Institute
http://escher.isis.vanderbilt.edu/tools/get_tool?UDM

[vla] Messie, D., “Polymorphic Self-* Agents for
Stigmergic Fault Mitigation in Large-Scale Real-Time
Embedded Systems”, Fourth International Joint
Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), Utrecht, The Netherlands, July,
2005.

[1] Z. Kalbarczyk, R. K. Iyer, and L. Wang,
“Application Fault Tolerance with Armor
Middleware,” IEEE Internet Computing,
Special Issue on Recovery-Oriented
Computing, March/April 2005.

[2] K. Whisnant, R. Iyer, Z. Kalbarczyk, et al.
“The Effects of an ARMOR-Based SIFT

Environment on the Performance and
Dependability of User Applications,” in IEEE
Transactions on Software Engineering, 30(4),
2004.

[3] 21. K. Whisnant, Z. Kalbarczyk, R. Iyer,
“A System Model for Reconfigurable
Software,” in IBM Systems Journal, 42(1),
2003.

[4] Z. Kalbarczyk, et al. “Chameleon: A software
infrastructure for adaptive fault tolerance,” in
IEEE Trans. on Parallel and Distributed
Systems, 10(6), 1999.

